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Unsteady stalled flow around a rotating cylinder is investigated in a numerical 
experiment. Attention is mostly given to the reverse Magnus effect which was dis- 
covered in tube experiments at some critical rotational speed of the cylinder. 

Transverse flow around a rotating cylinder has been investigated by many authors, chief- 
ly experimentally, for more than 200 years. A review of these investigations is given in [i]. 
They were carried out with different values of the relative rotational speed O = VT/Uo, dif- 
ferent Reynolds numbers, degrees of turbulence of the incoming stream, degree of surface 
roughness, and other parameters. 

It was established that the lift of the cylinder (Magnus effect) increases with its in- 
creasing rotational speed. However, it was found by recent experiments [i, 2] that in the 
range 0<O~0.5 there may arise conditions of flow around a rotating cylinder such that the 
lift abruptly decreases, and with some combinations of the Reynolds numbers and O there may 
arise a "negative" Magnus effect (the lift changes sign). 

For calculating nonsteady stalled flow around a rotating cylinder, we used in the pres- 
ent work an approach explained in [3]. It is based on the synthesis of the method of dis- 
crete vortices [4] and the theory of boundary layers. 

The calculation scheme of flow is presented in Fig. i. From the solution of the prob- 
lem of nonviscous flow with vortex wakes [3] around a cylinder we determined the speed of the 
liquid relative to the cylinder surface taking the rotation of the cylinder into account 

I 
Vo = Uo, + Wz + - 7 -  (~',~ - -  cod). 

Here W is the speed induced by the total adjoint vortices F E of the cylinder and by the free 
vortices A of the vortex sheets. The subscript Z denotes the tangential direction to the 
cylinder. 

From the distribution of the speed Vo on the cylinder surface we determined the posi- 
tion of the points of inflow HI, H=, ... (Fig. i), i.e., the points at which the speed of the 
liquid in relative motion on the rotating cylinder is equal to zero. As in [I], these points 
were made identical with the starting points of the boundary layer. In the general case of a 
rotating cylinder they do not coincide with the critical points Kx, K=, ..., at which the 
speed of absolute motion of the liquid is equal to zero. Since the boundary layer on the 
cylinder surface is relatively thin, we took it that the velocity of transport across its 
thickness is constant. The flow in the boundary layer was therefore calculated in relative 
motion. As boundary conditions for calculating the boundary layer we used the velocity dis- 
tribution of the relative motion of a nonviseous liquid, and as its point of separation we 
took, as in [3], such a point on the cylinder surface at which 3u/~n ~ 0. The separating 
boundary layer was considered completely dislodged into the region of potential flow in the 
form of vortex sheets with an intensity equal to the vorticity of the boundary layer at the 
points of its separation [3]. 

In the process of interaction of the above-mentioned vortex sheets, zones of reverse 
flow may originate in the direct vicinity of the cylinder, with the formation not of one 
(frontal) but of several critical points and starting points of the boundary layer. Figure 
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Fig. i. Flow pattern: i) boundary of the boundary layer; 
2) free vortex sheet. 

i shows three such zones. In such cases the calculation of viscous flow in the boundary lay- 
er was carried out by starting from each point of inflow. 

The flow parameters in the viscous range are determined by integrating the system of dif- 
ferential equations of the nonsteady boundary layer which, with the generally accepted nota- 
tion, is written as follows: 

Ou Ov = O, Ou Ou Ou 1 Op 1 OT (1) 

0 - 7  - +  On - 2 i -  + " -b-F + - - -  On p O l + --p --On 
The boundary conditions used in solving the system (I) are usually the condition of ad- 

hesion of liquid particles to the cylinder surface and the tending of the longitudinal ve- 
locity in the boundary layer on its outer boundary toward the velocity of the outer flow, 
i.e., 

u = O ,  v = O  for n = O ;  u---~Vo fo r  n - ~ 5 .  

In  t h e  g e n e r a l  c a s e  o f  a t u r b u l e n t  b o u n d a ry  l a y e r  t h e  s h e a r  s t r e s s  T i s  d e t e r m i n e d  v i a  
t h e  p u l s a t i o n  components  o f  t h e  v e l o c i t y  u '  and v '  by t h e  e x p r e s s i o n  

( ,,u@ ) Ou Ou 
"~=~ l - -  --~Ou/On ~ =  ~ ( l + e )  On ' 

and for a laminar boundary layer by Newton's formula 

0u 

x = ~.t On 
For  c l o s i n g  t he  sy s t em of  d i f f e r e n t i a l  e q u a t i o n s  o f  a n o n s t e a d y  t u r b u l e n t  b o u n d a r y  l a y e r  

(i) we used a two-layer model of turbulent viscosity which may be written in the following 
form [5] : 

1 (• 1 - - e x p  n 'p  --d]---p- j x 

I Ou , O ~ < n ~ < n o ,  
e = X i '~ '~-" n ( 2 )  

I 1S 1 ~o (Vo--u) dn 
~3 , rt > nO, 

t ~ 1 + • (n/5) 6 

where • are empirical constants (~x=0.41; ~2=26; • u4=5,5) , and no is the coordi- 
nate of the interlinking point of two layers of the boundary layer. It is chosen from the 
condition of continuity of the vortex viscosity across the boundary layer. 
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Fig. 2 

Fig. 2. The effect of the relative rotational speed 
the drag coefficient C x (dimensionless magnitudes): 
calculation. 

Fig. 3 

@ on the lift coefficient Cy and 
i) experimental data of [2]; 2) 

Pig. 3. Peculiarities of the change of position of the points of separation ~i and 
~2 (deg), of the lift coefficient Cy and of the drag coefficient C x in time T for 0 = 
0.2 (dimensionless magnitudes): I) experimental data of [2]; 2) calculation. 

The expression for turbulent viscosity (2) does not take the level of turbulence of the 
outer stream into account, but it can be taken into account, e.g., by a method explained in 
[6]. The system of differential equations (i) jointly with expression (2) for turbulent vis- 
cosity was integrated by the finite-difference method. 

To economize on storage capacity of the computer and computer time expended on calculat- 
ing nonviscous flow at each step, a number of discrete vortices were united when the bunch of 
vortices was sufficiently far from the cylinder, and this was done at each cell of the grid 
that was not less than 2-3 diameters behind the cylinder (Fig, i). The circulation of a uni- 
fying discrete vortex was equal to the algebraic sum of the circulations of the discrete Vor- 

tices in the given cell of the grid Ac= ~ A~ , and its coordinates were determined with a 
i=! 

view to the magnitude of the circulation of the unified discrete vortices (~ is the number 
of unified vortices). 

In calculating the nonsteady stalled flow around a motionless and an oscillating cylin- 
der, Belotserkovskii et al. [7] established that, as in the experiment [8], the velocity of 
the longitudinal motion of vortex bunches is approximately 80% of the velocity of the incom- 
ing flow. The velocity of the unifying vortex was therefore henceforth adopted eq~i to 0.8" 
Uo. 

By special methodological investigations it was established that the results of the cal- 
culations do not differ by more than 2-3% from the results of calculations without the de- 
scribed unification, and the time needed for the calculation was reduced by approximately 40%. 

Bychkov and Kovalenko [2] presented detailed experimental data on the coefficients Cy 
and C x of a rotating cylinder with transverse flow around it and with different values of @ 
and Re and a low degree of turbulence of the incoming flow. In Fi E . 2 separate points indi- 
cate the experimental dependences of C v and C x on @ with Re = 0.64.10 ~. It can be seen that 
when @ = 0.2, which in [2] was found to be critical, there occurs a jump!ike change of the 
values of C. and Cx; this indicates that there is an abrupt change in the flow regime. The 
authors of ~i, 2] assumed that this effect is connected with transient phenomena in the bound- 
ary layer. With Reynolds numbers Re < Recr on that part of the front face of the rotating 
cylinder that moves against the flow, the laminar flow in the boundary layer, occurring with 
small @<@cr, changes into turbulent flow at larger @>@cr" 
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Fig. 4. Kinematic velocity field of a 
rotating cylinder. 

It seems that on this part of the surface the number Re0=V0d/v, determined according to 
the local relative flow velocity, becomes larger than its critical value. Flow in the bound- 
ary layer is therefore turbulized, and the point of separation moves downstream. Because of 
the increased region of flow without separation on this surface, the lift acting on the ro- 
tating cylinder decreases to a negative value. On part of the surface moving in the direc- 
tion of the outer flow, the flow in the boundary layer remains laminar. 

With further increase of the parameter of rotation O, the points of separation of the 
boundary layer shift in the direction in which the cylinder rotates, and the lift continues 
to increase. 

When Re > Recr and the flow in the boundary layer of the front part of the cylinder is 
turbulent, the flow in the boundary layer becomes laminar when the parameter of rotation O 
increases because of the reduced relative velocity, and thus also of the local number Reo on 
the front face of the cylinder moving in the direction of the flow. This is the cause of the 
shift of the point of separation upstream, of the reduced size of the zone of flow without 
separation on this part of the surface, and of reduced lift. 

Thus, the cause of the reverse of the lift of a rotating cylinder for O=Ocr is the sud- 
den shift of one of the points of separation of the boundary layer in the front part of the 
cylinder. 

By using the above-explained flow pattern, we carried out systematic calculations of non- 
steady stalled flow around a smooth rotating cylinder with different Reynolds numbers. Begin- 
ning from the value O~Ocr with Re < Recr , on that part of the surface of the rotating cyl- 
inder that moves against the flow, the flow in the boundary layer was calculated as turbulent, 
and on the part of the surface moving in the direction of the flow as laminar. 

With Re >Recr , in the range O~Ocr the flow in the boundary layer on the part of the 
cylinder surface moving with the flow was calculated as laminar while turbulent flow was main- 
tained on the surface moving against the flow. In the calculations we used the dependence 
Ocr = f(Re) obtained experimentally in [2]. 

In the rear part of the cylinder, because of the high level of turbulence of the outer 
flow in consequence of the strong interaction of the free vortex sheets, the flow in the 
boundary layer was considered to be turbulent. 

Figure 3 presents the results of the calculation of nonsteady stalled flow around a ro- 
tating cylinder at the critical rotational speed Ocr = (I/2)mcrd/Uo = 0.2 and Reynolds num- 
ber Re = 0.64"10 ~, which is supercritical for a motionless cylinder. In the calculation un- 
der consideration it was therefore assumed that the flow in the boundary layer on the upper 
cylinder surface is still maintained turbulent. It can be seen from Fig. 3 that as with a 
motionless cylinder, after the passage of approximately 7-8 units of dimensionless time T = 
Uot/d, a periodic nature of flow wiDh the aerodynamic Strouhal number -0.2 becomes estab- 
lished. 

An analysis of the calculations showed that in consequence of the rotation of the cyl- 
inder, the boundary layer on its upper surface is subjected to a relatively smaller longitu- 
dinal pressure gradient (especially in the region of elevated pressure) than on the lower sur- 
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face. The result is that the boundary layer on the upper surface opens up further downstream 
than on the lower surface. Therefore, the mean value of the angle ~i=110 ~ , and ~2=--90 ~ 
i.e., in comparison with a motionless cylinder the points of separation of the boundary layer 
are shifted in the direction of rotation of the cylinder. 

The mean values of the lift and drag coefficients are in satisfactory agreement with the 
experimental data of [2]. Analogous calculations with the same Reynolds number were carried 
out in the range of values of relative rotational speeds 0~O~0,8. It can be seen from Fig. 
2 that with increasing rotational speed, the lift coefficient of the cylinder increases prac- 
tically linearly. When @ = 0.2, Cy abruptly decreases to negative values in consequence of 
the transition of the flow in the boundary layer on the upper surface from turbulent to lami- 
nar. When O increases further, Cy again increases in the range 0>O cr" 

With increasing @, when O<Ocr, the drag coefficient of the cylinder increases only 
slightly. This is so because in this range of values of O the poin t of separation on the up- 
per surface shifts less in the direction of rotation than on the lower surface. As a result, 
the zone of rarefaction somewhat increases on the bottom part of the cylinder, and this leads 
to an increase of its drag. 

With values O=Ocr, in consequence of the change of the flow in the boundary layer from 
turbulent to laminar and the abrupt shift of the point of separation on the upper surface 
against the flow, the zone of rarefaction increases in the bottom region of the cylinder, and 
this leads to a jumplike increase of the drag. 

An analysis of the results of the calculations showed that in the supercritical range of 
values of O the drag of the cylinder changes only slightly. This is so because on account of 
the mutual shift of the points of separation of the boundary layer on the upper and lower sur- 
face in the direction of rotation of the cylinder, the size of the zone of rarefaction in the 
bottom region of the cylinder remains approximately constant. 

The formation of the boundary layer in the bottom region of the cylinder, its separation, 
and interaction with the boundary layer separating from the front part are analogous to the 
case of a motionless cylinder [3]. 

Calculations of nonsteady stalled flow around a rotating cylinder with other Reynolds 
numbers also showed qualitative and quantitative agreement with the experimental data. 

Figure 4 shows the velocity field and the near aerodynamic wake behind a rotating cylin- 
der with Re = 0.64"10 ~ and @ = 0.75. The figure also shows the time-averaged position of the 
critical point K, of the points of separation of the laminar (L) and of the turbulent (T) 
boundary layers with the upper and lower surface of the front part of the cylinder. It can 
be seen from the flow pattern that, as in the experiment, the flow curves in the vicinity of 
the rotating cylinder. 

Thus, the mathematical model of nonsteady stalled flow around a rotating cylinder, sug- 
gested in the present article, makes it possible to determine the aerodynamic flow charac- 
teristics which agree qualitatively and quantitatively with the experimental data. 

NOTATION 

d, diameter of the cylinder; x, y, Cartesian coordinates; ~ , angular position of the 
points of separation of the boundary layer; Uo, translational speed of the cylinder; VT, cir- 
cumferential rotational speed of the cylinder; m, angular rotational speed of the cylinder; 
W, velocity induced by vortices; u, v, longitudinal and transverse velocity, respectively, in 
the boundary layer in relative motion; yl, vorticity of the summary adjoint vortex layer; 9, 
kinematic viscosity; Z, tangent to the cylinder surface; n, normal to the cylinder surface; 
6, thickness of the boundary layer; Cy, lift coefficient; Cx, drag coefficient; Re = Uod/~, 
Reynolds number; T = Uot/d, dimensionless time; t, time; Tw, surface friction; p, pressure; 
p, density; ~, dynamic viscosity; e, dimensionless turbulent viscosity. 

i .  
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ANALYSIS OF THE DRAG OF TWO DISCS IN A TURBULENT 

INCOMPRESSIBLE FLUID FLOW 

S. A. Isaev UDC 532.517.4 

The effect of reducing the drag of two discs is investigated by using difference 
modeling of their flow by using the two-parameter k -- e turbulence model. 

Analysis of the aerodynamic drag of two blunt bodies located behind each other in a uni- 
form flow is represented by one of the urgent problems of the aerodynamics of poorly stream- 
lined bodies. Its practical value is to the necessity of predicting the aerodynamic charac- 
teristics of systems of poorly streamlined bodies, on the one hand, and to the tendency to 
organize the flow around bodies of revolution by using the premeditated formation of devel- 
oped circulation zones near their surface in order to improve their characteristics substan- 
tially [i], on the other. It is established in [1-3] that a significant diminution in the 
profile drag is observed in the axisymmetric flow around groups of bodies comprised of two 
discs, or a disc and a cylinder, as compared to the case of their isolated flow. Thus, by 
setting a disc of appropriate size at the optimal distance ahead of a single disc, a config- 
uration can be obtained whose total drag would be 81% less than for a single disc, while the 
profile drag coefficient for a disc--cylinder composition can reach the value 0.02, i.e., 
close to the pressure drag coefficient in the case of potential flow around a body. 

As follows from the papers mentioned above, interaction between the wake behind a disc 
with the large-diameter disc located downstream can be stable in nature; the flow configura- 
tion is determined greatly by the presence of such elements of different scale as the viscous 
shear layer and the circulation zones. The sharp edges of the discs turbulizing the stream 
for comparatively moderate Reynolds numbers (on the order of 103 ) result in a mode of devel- 
oped turbulent flow around the discs, for which a sufficiently weak dependence of the body 
drag on the Reynolds number, in particular, is characteristic. The complexity of the flow 
occurring around the discs and the interrelation between the components of its structural ele- 
ments suggest turning to numerical modeling of the flow around the discs on the basis of solv- 
ing the Reynolds equations by finite-difference methods in combination with a semiempirical 
two-parameter turbulence model k -- e consisting of the introduction of two differential equa- 
tions for the turbulent energy fluctuations k and its dissipation velocity e, a number of semi- 
empirical constants, and an algebraic expression for the turbulent viscosity coefficient. It 
is considered that such a turbulence model correctly describes the developed turbulent flow 
mode. 

The purpose of this paper is to compute the drag of a configuration of two discs of dif- 
ferent size in the stationary uniform flow of an incompressible fluid in the ranges of varia- 
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